library(patchwork)
predictedIndices <- finalModelData %>%
filter(type == "Abundance") %>%
# mutate(nPlots = 100) %>%
select(type,Richness,ShannonEvenness,nPlots,Ecoregion,x,y) %>%
summarize(across(c(Richness,ShannonEvenness),~runif(10000,min(.x),max(.x))),
wID = sample(n(),10000,T),
x = x[wID],
y = y[wID],
nPlots = sample(nPlots,10000,T),
type = sample(c("Abundance","Presence/Absence"),10000,T),
.groups = "drop") %>%
mutate(FEve = predict(finalModels %>%
filter(form == "type*(Richness + ShannonEvenness)" &
Index == "FEve") %>%
pull(model) %>% {.[[1]]$gam},.),
FDis = predict(finalModels %>%
filter(form == "type*(Richness + ShannonEvenness)" &
Index == "FDis") %>%
pull(model) %>% {.[[1]]$gam},.),
FDiv = predict(finalModels %>%
filter(form == "type*(Richness + ShannonEvenness)" &
Index == "FDiv") %>%
pull(model) %>% {.[[1]]$gam},.)) %>%
mutate(
Richness = exp((0.837*Richness+3.17906)),
ShannonEvenness = ShannonEvenness*0.0937 + 0.8026
)
predictedIndices %>%
mutate(Richness = log(Richness)) %>%
pivot_longer(c(FEve,FDis,FDiv),names_to="Index",values_to="IV") %>%
pivot_longer(c(Richness,ShannonEvenness)) %>%
nest(dat = !type) %>%
mutate(plt = map2(dat,type, function(a,b) {
ggplot(a,aes(value,IV)) +
geom_hex(aes(color=after_scale(fill))) +
stat_summary_bin(color="firebrick1") +
geom_smooth() +
scale_fill_viridis_c(trans = "log10") +
facet_grid(rows = vars(Index), cols = vars(name), scales = "free") +
coord_cartesian(expand = F) +
baseTheme +
theme(aspect.ratio = 1,
plot.title = element_text(hjust = .5)) +
labs(title = b, x = NULL, y = NULL)
})) %>%
pull(plt) %>%
wrap_plots()
predictedIndices %>%
pivot_longer(c(FDis,FDiv,FEve)) %>%
nest(dat = !name) %>%
mutate(plt = map2(dat,name, function(d,n) {
d %>%
ggplot(aes(Richness,ShannonEvenness,z=value)) +
stat_summary_2d(aes(color=after_scale(fill)),
bins = 15,
drop = F) +
scale_fill_viridis_c() +
scale_x_log10() +
coord_cartesian(expand = F) +
baseTheme +
theme(aspect.ratio = 1) +
labs(fill = n)
})) %>%
pull(plt) %>%
patchwork::wrap_plots()
modelDataRaw$Richness %>% log %>% scale
modelDataRaw$`Shannon\nEvenness` %>% scale
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.